Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Pest Manag Sci ; 80(6): 2689-2697, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38327015

RESUMO

BACKGROUND: RNA interference (RNAi) is the sequence-dependent suppression of gene expression by double-stranded RNA (dsRNA). This is a promising strategy for the control of insect pests because dsRNA can be rationally designed to maximize efficacy and biosafety, the latter by using sequences that are found in target pests but are safe for non-target insects. However, this has yet to be optimized in aphids, destructive sap-sucking pests that also transmit plant viruses. We used the green peach aphid (Myzus persicae) as a case study to optimize the efficiency of RNAi by applying a novel fusion dsRNA design. RESULTS: Comparative transcriptomics revealed a number of genes that are induced in feeding aphids, and eight candidate genes were chosen as RNAi targets. To improve RNAi efficiency, our fusion dsRNA design approach combined optimal gene fragments (highly conserved in several aphid species but with less homology in beneficial insects such as the predator ladybeetle Propylea japonica) from three candidate genes. We compared this RNAi-based biological control approach with conventional chemical control using imidacloprid. We found that the fusion dsRNA strategy inhibited the aphid population to a significantly greater extent than single-target RNAi and did not affect ladybeetle fitness, allowing an additive effect between RNAi and natural predation, whereas imidacloprid was harmful to aphids and ladybeetles. CONCLUSION: Our fusion dsRNA design approach enhances the ability of RNAi to control aphids without harming natural predators. © 2024 Society of Chemical Industry.


Assuntos
Afídeos , Interferência de RNA , RNA de Cadeia Dupla , Afídeos/genética , Animais , RNA de Cadeia Dupla/genética , Besouros/genética , Controle Biológico de Vetores/métodos , Controle de Insetos/métodos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia
2.
Insect Sci ; 31(1): 2-12, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37162315

RESUMO

RNA interference (RNAi) is a form of gene silencing triggered by double-stranded RNA (dsRNA) that operates in all eukaryotic cells. RNAi has been widely investigated in insects to determine the underlying molecular mechanism, to investigate its role in systemic antiviral defense, and to develop strategies for pest control. When insect cells are infected by viruses, viral dsRNA signatures trigger a local RNAi response to block viral replication and generate virus-derived DNA that confers systemic immunity. RNAi-based insect pest control involves the application of exogenous dsRNA targeting genes essential for insect development or survival, but the efficacy of this approach has limited potency in many pests through a combination of rapid dsRNA degradation, inefficient dsRNA uptake/processing, and ineffective RNAi machinery. This could be addressed by dsRNA screening and evaluation, focusing on dsRNA design and off-target management, as well as dsRNA production and delivery. This review summarizes recent progress to determine the role of RNAi in antiviral defense and as a pest control strategy in insects, addressing gaps between our fundamental understanding of the RNAi mechanism and the exploitation of RNAi-based pest control strategies.


Assuntos
Insetos , Controle de Pragas , Animais , Interferência de RNA , Insetos/genética , Insetos/metabolismo , Controle de Insetos , RNA de Cadeia Dupla/metabolismo , Antivirais/metabolismo
3.
Insect Sci ; 31(1): 255-270, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37358052

RESUMO

Sap-sucking insects often transmit plant viruses but also carry insect viruses, which infect insects but not plants. The impact of such insect viruses on insect host biology and ecology is largely unknown. Here, we identified a novel insect-specific virus carried by brown citrus aphid (Aphis citricidus), which we tentatively named Aphis citricidus picornavirus (AcPV). Phylogenetic analysis discovered a monophyletic cluster with AcPV and other unassigned viruses, suggesting that these viruses represent a new family in order Picornavirales. Systemic infection with AcPV triggered aphid antiviral immunity mediated by RNA interference, resulting in asymptomatic tolerance. Importantly, we found that AcPV was transmitted horizontally by secretion of the salivary gland into the feeding sites of plants. AcPV influenced aphid stylet behavior during feeding and increased the time required for intercellular penetration, thus promoting its transmission among aphids with plants as an intermediate site. The gene expression results suggested that this mechanism was linked with transcription of salivary protein genes and plant defense hormone signaling. Together, our results show that the horizontal transmission of AcPV in brown citrus aphids evolved in a manner similar to that of the circulative transmission of plant viruses by insect vectors, thus providing a new ecological perspective on the activity of insect-specific viruses found in aphids and improving the understanding of insect virus ecology.


Assuntos
Afídeos , Citrus , Vírus de Insetos , Vírus de Plantas , Vírus de RNA , Animais , Afídeos/genética , RNA/metabolismo , Vírus de Insetos/genética , Filogenia , Vírus de RNA/genética , Vírus de Plantas/genética , Doenças das Plantas
4.
Pestic Biochem Physiol ; 197: 105645, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072520

RESUMO

RNA interference (RNAi) is a promising tool for pest control and relies on sequence-specific gene silencing. Salivary proteins are cooperatively secreted into plants to guarantee the feeding of aphids; thus they have potential to develop as selective targets for RNAi-based pest control strategy. For this purpose, we firstly analyzed 18 salivary proteomes of various aphid species, and these salivary proteins can be mainly categorized into seven functional groups. Secondly, we created a work-flow for fusion dsRNA design that can target multiple genes but were selectively safe to beneficial insects. Based on this approach, seven fusion dsRNAs were designed to feed the green peach aphid, which induced a significant reduction in aphid fitness. Among them, ingestion of dsperoxidase induced the highest mortality in aphids, which was also significantly higher than that of traditional dsRNAs in targeting three peroxidases separately. In addition, dsperoxidase-fed green peach aphids triggered the highest H2O2 content of host plants as well as the attraction to natural enemies (ladybeetle and parasitic wasp) but repellent to other control aphids. Our results indicate that the fusion dsRNA design approach can improve aphid control capacity, and the fusion dsRNA targeting salivary protein-encoding genes can enhance the direct and indirect defenses of host plants, thus providing a new strategy for RNAi-based aphid control.


Assuntos
Afídeos , Animais , Interferência de RNA , Afídeos/genética , Afídeos/metabolismo , Peróxido de Hidrogênio/metabolismo , Inativação Gênica , RNA de Cadeia Dupla/genética , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo
5.
Microbiol Spectr ; 11(6): e0313923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37930041

RESUMO

IMPORTANCE: Parasitoid wasp populations have developed persistent beneficial symbiotic relationships with several viruses through repeated evolution. However, there have been limited reports on RNA viruses in parasitoid wasps of tephritid flies, a significant pest group affecting fruits and vegetables. This study explores the diversity of RNA viruses in three parasitoid wasps of tephritid flies and highlights the potential biological significance of specific viruses in Diachasmimorpha longicaudata. These findings have important implications for the development of sustainable pest management strategies and the enhancement of artificial rearing techniques for parasitoid wasps.


Assuntos
Dípteros , Vírus de RNA , Vírus , Vespas , Animais , Vespas/genética , Vírus de RNA/genética
6.
Sci Total Environ ; 861: 160610, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36460117

RESUMO

Thiacloprid is a new chlorinated nicotinoid insecticide against stinging-oral pests, such as aphids. It is less toxic to bees but more toxic to earthworms. In this study, a pH- and amylase-responsive MOF (ZIF-8) was constructed for site-specific delivery of thiacloprid to control pea aphids and more safety for earthworms. Thiacloprid from α-cyclodextrin@Thiacloprid@ZIF-8 (α-CD@T@ZIF-8) could be released quickly in pea aphids, which was ascribed to disintegration of ZIF-8 at low pH values in pea aphid intestines and degradation of α-CD under the action of α-amylase. The release results showed a significant pH dependence of α-CD@T@ZIF-8, with an approximately 65 % release amount at pH = 7 and a 95 % release amount at pH = 5 for 7 d. The results of the pot experiment and biosafety showed that for α-CD@T@ZIF-8, 88 % pea aphids could be killed compared with 32 % aphids for commercially available formulation on the 7th day after application. Meanwhile the LC50 of thiacloprid OD was 0.034 µg/cm2 and the LC50 of α-CD@T@ZIF-8 was 0.564 µg/cm2 on earthworms, and it was more safety for pea and lower acute toxicity and enrichment for the earthworms. α-CD@T@ZIF-8 could be used for intelligently controlled release of other insecticides against aphids.


Assuntos
Afídeos , Inseticidas , Oligoquetos , Animais , Afídeos/metabolismo , Pisum sativum , Oligoquetos/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Concentração de Íons de Hidrogênio
7.
Insect Sci ; 30(5): 1337-1351, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36479917

RESUMO

Spider mites (Tetranychidae) are destructive agricultural pests which have evolved strategies to overcome plant defenses, such as the ability to puncture the leaves of their hosts to feed. The expression of many genes with unknown functions is altered during feeding, but little is known about the role of these genes in plant-mite interactions. Here, we identified 3 novel gene families through analysis of genomic and transcriptomic data from 3 spider mite species. These GARP family genes encode glycine and alanine-rich proteins; they are present in mites (Acariformes) but absent in ticks (Parasitiformes) in the subclass Acari, indicating that these genes have undergone a significant expansion in spider mites and thus play important adaptive roles. Transcriptomic analysis revealed that the expression of GARP genes is strongly correlated with feeding and the transfer to new hosts. We used RNA interference to silence GARP1d in the two-spotted spider mite Tetranychus urticae, which inhibited feeding and egg laying and significantly increased mortality when the mites were transferred to soybean shoots; a similar effect was observed after TuVATPase was silenced. However, no changes in mite mortality were observed after TuGARP1d-silenced mites were placed on an artificial diet, which was different from the effect of TuVATPase silencing. Our results indicate that GARP family members play important roles in mite-plant interactions. Additional studies are needed to clarify the mechanisms underlying these interactions.

8.
Insect Sci ; 30(5): 1393-1404, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36576078

RESUMO

Systemic RNA interference deficient-1-like (SIL1) is considered a core component in dsRNA uptake in some insect species. Investigation related to the potential function of SIL1 in dsRNA uptake can contribute to a further understanding of RNA interference (RNAi) mechanisms in insects and agricultural pest control. However, the role of SIL1 in dsRNA uptake in insects such as aphids remains controversial. We have thoroughly analyzed the role of SIL1 from the model aphid Acyrthosiphon pisum (ApSIL1) in cellular dsRNA to clarify its function. First, the induced expression of ApSIL1 upon dsRNA oral exposure provided a vital clue for the possible involvement of ApSIL1 in cellular dsRNA uptake. Subsequent in vivo experiments using the RNAi-of-RNAi approach for ApSIL1 supported our hypothesis that the silencing efficiencies of reporter genes were reduced after inhibition of ApSIL1 expression. The impaired biological phenotypes of aphids, including cumulative average offspring, deformities of the nymph, and mortality upon pathogen infection, were then observed in the treatment group. Thereafter, in vitro dual-luciferase reporter assay showed compelling evidence that the luciferin signal was significantly attenuated when dsluciferase or dsGFP was transferred into ApSIL1-transfected Drosophila S2 cells. These observations further confirmed that the signal of Cy3-labeled dsRNA was rapidly attenuated with time in ApSIL1-transfected Drosophila S2 cells. Overall, these findings conclusively establish that ApSIL1 is involved in dsRNA uptake in A. pisum.


Assuntos
Afídeos , Animais , Interferência de RNA , Afídeos/fisiologia , Pisum sativum/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Drosophila/genética
9.
Insect Biochem Mol Biol ; 150: 103846, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202385

RESUMO

Aphids feed on plant phloem sap that contains massive amounts of sucrose; this not only provides vital nutrition for the aphids but also produces high osmotic pressure. To utilize this carbon source and overcome the osmotic pressure, sucrose is hydrolyzed into the monosaccharides, glucose and fructose. In the green peach aphid (Myzus persicae), we show that this process is facilitated by a key α-glucosidase (MpAgC2-2), which is abundant in the aphid salivary gland and is secreted into leaves during feeding. MpAgC2-2 has a pH optimum of 8.0 in vitro, suggesting it has adapted to the environment of plant cells. Silencing MpAgC2-2 (but not the gut-specific MpAgC3-4) significantly increased the amount of sucrose ingested and hindered aphid feeding on the phloem of tobacco seedlings, resulting in a smaller body size, as well as lower α-glucosidase activity and glucose levels. These effects could be rescued by feeding aphids on tobacco plants transiently expressing MpAgC2-2. The transient expression of MpAgC2-2 also led to the hydrolysis of sucrose in tobacco leaves. Taken together, these results demonstrate that MpAgC2-2 is a salivary protein that facilitates extra-intestinal feeding via sucrose hydrolysis. Our findings provide insight into the ability of aphids to digest the high concentration of sucrose in phloem, and the underlying mechanism of extra-intestinal digestion.


Assuntos
Afídeos , Animais , Afídeos/genética , alfa-Glucosidases/genética , Saliva , Nicotiana , Sacarose , Glucose , Digestão
10.
J Insect Physiol ; 137: 104364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35121009

RESUMO

Insects must undergo ecdysis for successful development and growth, in which crustacean cardioactive peptide (CCAP) is a master hormone. However, the function of CCAP signaling in pea aphid, Acyrthosiphon pisum, remains unclear. In this study, we determined the sequence of the CCAP precursor and its receptor in A. pisum. We identified the functional receptor ApCCAPR, and then expressed this receptor in Chinese hamster ovary (CHO) cells, which in consequence exhibited high sensitivity to the ApCCAP mature peptide. The ApCCAP transcript was detected in the central nervous system of A. pisum. Neurons containing CCAP were also identified by immunohistochemical staining against insect CCAP. RNAi silencing of ApCCAP or ApCCAP-R signals caused developmental failure during nymph-adult ecdysis. The dsRNA-treated fourth-instar nymphs could not shed their old cuticle and died. Taking these findings together, we conclude that ApCCAP, via the activation of ApCCAP-R, plays an essential role in regulating the process of nymph-adult ecdysis in A. pisum. Our results deepen our understanding of the regulation of early ecdysis in A. pisum.


Assuntos
Afídeos , Muda , Animais , Afídeos/genética , Células CHO , Cricetinae , Cricetulus , Muda/fisiologia , Neuropeptídeos , Pisum sativum
11.
Microb Ecol ; 83(3): 739-752, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34173031

RESUMO

RNA viruses are extremely diverse and rapidly evolving in various organisms. Our knowledge on viral evolution with interacted hosts in the manner of ecology is still limited. In the agricultural ecosystem, invasive insect species are posing a great threat to sustainable crop production. Among them, fruit flies (Diptera: Tephritidae Bactrocera and Zeugodacus) are destructive to fruits and vegetables, which are also closely related and often share similar ecological niches. Thus, they are ideal models for investigating RNA virome dynamics in host species. Using meta-transcriptomics, we found 39 viral sequences in samples from 12 fly species. These viral species represented the diversity of the viromes including Dicistroviridae, negev-like virus clades, Thika virus clades, Solemoviridae, Narnaviridae, Nodaviridae, Iflaviridae, Orthomyxoviridae, Bunyavirales, Partitiviridae, and Reoviridae. In particular, dicistrovirus, negev-like virus, orthomyxovirus, and orbivirus were common in over four of the fly species, which suggests a positive interaction between fly viromes that exist under the same ecological conditions. For most of the viruses, the virus-derived small RNAs displayed significantly high peaks in 21 nt and were symmetrically distributed throughout the viral genome. These results suggest that infection by these viruses can activate the host's RNAi immunity. Our study provides RNA virome diversity and evidence on their infection activity in ecologically associated invasive fruit fly species, which could help our understanding of interactions between complex species and viruses.


Assuntos
Vírus de RNA , Tephritidae , Animais , Ecossistema , Quênia , Vírus de RNA/genética , Transcriptoma
12.
Insect Sci ; 29(3): 801-816, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34586709

RESUMO

Pesticide resistance and resurgence are serious problems often occurring simultaneously in the field. In our long-term study of a fenpropathrin-resistant strain of Tetranychus cinnabaribus, enhancement of detoxification and modified fecundity mechanisms were both observed. Here we investigate the network across these two mechanisms and find a key node between resistance and resurgence. We show that the ecdysone pathway is involved in regulating the fecundity of T. cinnabaribus. The concentration change of ecdysone is consistent with the fecundity curve; the concentration of ecdysone is higher in the fenpropathrin-resistant strain which has stronger fecundity. The enhancement of ecdysone is due to overexpression of two P450 genes (CYP314A1 and CYP315A1) in the ecdysone synthesis pathway. Silencing expression of these CYP genes resulted in lower concentration of ecdysone, reduced expression of vitellogenin, and reduced fecundity of T. cinnabaribus. The expression of CYP315A1 is regulated by transcription factors Cap-n-collar isoform C (CncC) and Musculoaponeurotic fibrosarcoma protein (Maf), which are involved in regulating other P450 genes functioning in detoxification of fenpropathrin in T. cinnabaribus. A similar regulation is established in citrus pest mite Panonychus citri showing that the CncC pathway regulates expression of PcCYP315A1, which affects mite fecundity. Transcription factors are activated to upregulate detoxification genes facilitating pesticide resistance, while the "one to multiple" regulation mode of transcription factors simultaneously increases expression of metabolic enzyme genes in hormone pathways and alters the physiology of pests. This is an important response of arthropods to pesticides which leads to resistance and population resurgence.


Assuntos
Fibrossarcoma , Ácaros , Praguicidas , Tetranychidae , Animais , Ecdisona , Ácaros/genética , Tetranychidae/genética , Fatores de Transcrição/genética
13.
Insect Sci ; 29(3): 645-656, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34399028

RESUMO

Carotenoids are involved in many essential physiological functions and are produced from geranylgeranyl pyrophosphate through synthase, desaturase, and cyclase activities. In the pea aphid (Acyrthosiphon pisum), the duplication of carotenoid biosynthetic genes, including carotenoid synthases/cyclases (ApCscA-C) and desaturases (ApCdeA-D), through horizontal gene transfer from fungi has been detected, and ApCdeB has known dehydrogenation functions. However, whether other genes contribute to aphid carotenoid biosynthesis, and its specific regulatory pathway, remains unclear. In the current study, functional analyses of seven genes were performed using heterologous complementation and RNA interference assays. The bifunctional enzymes ApCscA-C were responsible for the synthase of phytoene, and ApCscC may also have a cyclase activity. ApCdeA, ApCdeC, and ApCdeD had diverse dehydrogenation functions. ApCdeA catalyzed the enzymatic conversion of phytoene to neurosporene (three-step product), ApCdeC catalyzed the enzymatic conversion of phytoene to ζ-carotene (two-step product), and ApCdeD catalyzed the enzymatic conversion of phytoene to lycopene (four-step product). Silencing of ApCscs reduced the expression levels of ApCdes, and silencing these carotenoid biosynthetic genes reduced the α-, ß-, and γ-carotene levels, as well as the total carotenoid level. The results suggest that these genes were activated and led to carotenoid biosynthesis in the pea aphid.


Assuntos
Afídeos , Vias Biossintéticas , Animais , Afídeos/genética , Vias Biossintéticas/genética , Carotenoides , Pisum sativum , Interferência de RNA
14.
Insect Sci ; 29(2): 430-442, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34015180

RESUMO

Spider mites have one ecdysone receptor (EcR) and multiple retinoid X receptors (RXRs). However, the function of these RXRs in spider mite development is unknown. Here, we screened the expression dynamics of two PcRXR isoforms at 4 h intervals in the deutonymphal stage of Panonychus citri. The results showed that PcEcR had an expression pattern similar to that of PcRXR2. For PcRXR1, its expression remained at a certain high level, when there was a decrease of both PcEcR and PcRXR2. In situ hybridization showed that PcRXR2 was detected in the central nervous mass, while the ecdysteroid biosynthesis gene PcSpo was mainly expressed at the edge of the central nervous mass. RNAi-based silencing of PcRXR1 or PcRXR2 showed the same phenotype as in mites with that of silencing PcEcR. Furthermore, RNA-seq was used to mine the genes associated with the expression dynamics of PcRXR1 or PcRXR2, which revealed that the heterodimer of EcR-RXR2 in spider mites might be linked with the cell autophagy and tissue remodeling during apolysis, and RXR1 might be linked with new epicuticle and exocuticle secretion during ecdysis. Taken together, these results increase our understanding of the regulation mechanism of ecdysteroid signal pathway in spider mite development.


Assuntos
Ácaros , Tetranychidae , Animais , Ecdisteroides , Muda/genética , Interferência de RNA , Tetranychidae/genética
15.
Insect Sci ; 29(4): 1120-1134, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34874617

RESUMO

Aphids are important agricultural pests, vectors of many plant viruses and have sophisticated relationships with symbiotic microorganisms. Abundant asymptomatic RNA viruses have been reported in aphids due to the application of RNA-seq, but aphid-virus interactions remain unclear. Bunyavirales is the most abundant RNA virus order, which can infect mammals, arthropods, and plants. However, many bunyaviruses have specific hosts, such as insects. Here, we discovered 18 viruses from 10 aphid species by RNA-seq. Importantly, a widespread presence bunyavirus, Aphid bunyavirus 1 (ABV-1), was determined to have a wide host range, infecting and replicating in all 10 tested aphid species. ABV-1 may be transmitted horizontally during feeding on plant leaves and vertically through reproduction. In a comparison of the physiological parameters of ABV-1high and ABV-1low strains of pea aphid, higher ABV-1 titers reduced the total nymphal duration and induced the reproduction. Moreover, viral titer significantly affected the lipid and protein contents in pea aphids. In summary, we proposed that ABV-1 may have stable symbiont-like relationships with aphids, and these observations may provide a new direction for studying bunyaviruses in aphids and establishing a model for virus-aphid interactions.


Assuntos
Afídeos , Orthobunyavirus , Vírus de Plantas , Vírus de RNA , Animais , Afídeos/fisiologia , Mamíferos , Simbiose/genética
16.
J Econ Entomol ; 114(6): 2543-2552, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34668540

RESUMO

Eotetranychus kankitus is an important mite pest in citrus, but molecular data on the developmental processes of E. kankitus are lacking. The different development stages mix of E. kankitus was used to sequence for transcriptome and small RNAs to identify genes and predict miRNAs associated with sesquiterpenoid and ecdysteroid biosynthesis and signaling pathways. More than 36 million clean reads were assembled and 67,927 unigenes were generated. Of the unigenes, 19,300 were successfully annotated through annotation databases NR, SwissProt, COG, GO, KEGG, PFAM, and KOG. The transcripts were involved in sesquiterpenoid biosynthesis (11 genes) and ecdysteroid biosynthesis and signaling pathway (13 genes). Another, small RNA library was obtained and 31 conserved miRNAs were identified. Five most abundant miRNAs were Ek-miR-5735, Ek-miR-1, Ek-miR-263a, Ek-miR-184, and Ek-miR-8. The target genes related to sesquiterpenoid and ecdysteroid showed that 10 of the conserved miRNAs could potentially target the sesquiterpenoid and ecdysteroid pathway according to four-prediction software, sRNAT, miRanda, RNAhybrid, and Risearch2. Thus, the results of this study will provide bioinformatics information for further molecular studies of E. kankitus which may facilitate improved pest control strategies.


Assuntos
MicroRNAs , Sesquiterpenos , Tetranychidae , Animais , Ecdisteroides , Perfilação da Expressão Gênica , MicroRNAs/genética , Anotação de Sequência Molecular , RNA-Seq , Tetranychidae/genética , Transcriptoma
17.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199120

RESUMO

Molting is essential for arthropods to grow. As one of the important arthropod pests in agriculture, key spider mite species (Tetranychus and Panonychus) can normally molt three times from the larva to adult stage within a week. This physiological strategy results in the short lifecycle of spider mites and difficulties in their control in the field. Long non-coding RNAs (lncRNAs) regulate transcriptional editing, cellular function, and biological processes. Thus, analysis of the lncRNAs in the spider mite molting process may provide new insights into their roles in the molting mechanism. For this purpose, we used high-throughput RNA-seq to examine the expression dynamics of lncRNAs and mRNAs in the molting process of different development stages in Panonychus citri. We identified 9199 lncRNAs from 18 transcriptomes. Analysis of the lncRNAs suggested that they were shorter and had fewer exons and transcripts than mRNAs. Among these, 356 lncRNAs were differentially expressed during three molting processes: late larva to early protonymph, late protonymph to early deutonymph, and late deutonymph to early adult. A time series profile analysis of differentially expressed lncRNAs showed that 77 lncRNAs were clustered into two dynamic expression profiles (Pattern a and Pattern c), implying that lncRNAs were involved in the molting process of spider mites. Furthermore, the lncRNA-mRNA co-expression networks showed that several differentially expressed hub lncRNAs were predicted to be functionally associated with typical molting-related proteins, such as cuticle protein and chitin biosynthesis. These data reveal the potential regulatory function of lncRNAs in the molting process and provide datasets for further analysis of lncRNAs and mRNAs in spider mites.


Assuntos
Genoma Helmíntico , Estudo de Associação Genômica Ampla , Muda/genética , RNA Longo não Codificante/genética , Tetranychidae/fisiologia , Animais , Biologia Computacional/métodos , Genes de Helmintos , Transcriptoma
18.
J Insect Sci ; 21(4)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34280294

RESUMO

Euproctis pseudoconspersa is a major pest of tea plants, and also causes a skin rash on workers in tea plantations. Research on virus could provide fundamental insights for classification, genetic diversity, evolution, and host-virus interaction mechanisms. Here, we identified a novel RNA virus, Euproctis pseudoconspersa bunyavirus (Phenuiviridae), and found that it is widely distributed in field populations of E. pseudoconspersa. The replication of virus in E. pseudoconspersa was indicated by Tag-PCR. These results contribute to the classification of bunyaviruses and provide insight into the diversity of commensal E. pseudoconspersa bunyavirus and the host.


Assuntos
Mariposas/virologia , Orthobunyavirus/genética , Animais , Produtos Agrícolas , Interações entre Hospedeiro e Microrganismos , Controle Biológico de Vetores , Filogenia , Prevalência , RNA Viral , Chá
19.
Insect Biochem Mol Biol ; 132: 103557, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33639241

RESUMO

RNAi is an essential technology for studying gene function in eukaryotes, and is also considered to be a potential strategy for pest control. However, the mechanism behind the cellular uptake of dsRNA in aphids, a group of important agricultural sucking pests, remains unknown. Here, using the pea aphid Acyrthosiphon pisum as model for aphids, we identified two core genes of clathrin-dependent endocytosis (CDE), Apchc and Apvha16. We confirmed that expression of Apchc, Apvha16 and RNAi core component genes (ApAgo2, ApDcr2 and ApR2d2) were simultaneously induced at 12 h after feeding dsRNA. By using an RNAi-of-RNAi approach, we demonstrated that suppression of Apchc and Apvha16 transcripts by RNAi significantly impaired RNAi efficiency of selected reporter genes (RGs), including ApGNBP1, Apmts and Aphb, suggesting the involvement of CDE in cellular dsRNA uptake in aphids. Further confirmation was also provided using two inhibitors, chlorpromazine (CPZ) and bafilomycin A1 (BafA1). Administration of CPZ and of BafA1 both led to an impaired silencing efficiency of the RGs in the pea aphid. Finally, these RNAi-of-RNAi results were reconfirmed in the peach aphid Myzus persicae. Taking these findings together, we conclude that CDE is involved in cellular dsRNA uptake in aphids.


Assuntos
Afídeos/metabolismo , Endocitose , Proteínas de Insetos/metabolismo , Controle de Pragas/métodos , RNA de Cadeia Dupla/metabolismo , Animais , Clatrina/metabolismo , Inativação Gênica , Interferência de RNA
20.
NanoImpact ; 22: 100304, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35559982

RESUMO

The CD@Fe3O4 photocatalysts were synthesized via hydrothermal synthesis method. The CD@Fe3O4 particles were synthesized using Fe3O4 as the core and using citric acid and ethylenediamine as a raw material, which were heated to 200 °C for 4 h. The synthesized fluorescent CD@Fe3O4 was characterized by HR-TEM, IR and fluorescence spectrophotometer. The HR-TEM results showed CD and Fe3O4 nanoparticles were uniform, mono-dispersed sphere or hemisphere particles with an average size of approximately 3 nm, and particle size of CD@Fe3O4 were mainly in range of 20-30 nm. XRD results showed the nanoparticles mainly belonged to Fe3O4 and CD@Fe3O4, which made recycling our photocatalysts possible due to the magnetic performance. On daylight lamp, the half-life of hexaconazole in CD@Fe3O4 photocatalysts was about 4 days, and it is lower than half-life (over 100 days) of hexaconazole without CD@Fe3O4 photocatalysts.


Assuntos
Carbono , Corantes , Catálise , Triazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA